新型电力系统有四方面基本特征
第一,广泛互联。“要形成更加坚强的互联互通网络平台,发挥大电网优势,获取季节差互补、风广水火互调和跨地区、跨领域补偿调节等效益,实现各类发电资源充分共享和互为备用。”
第二,智能互动。“现代信息通信技术与电力技术的深度融合,实现信息化、智慧化、互动化,改变传统能源电力的配置方式,由部分感知、单向控制、计划为主转变为高度感知、双向互动、智能高效。”
第三,灵活柔性。新能源要能够主动平抑处理波动,成为电网友好型电源,要具备可调可控能力,提升主动支撑性能。电网要充分具备调峰调频能力,实现灵活柔性性质,增强抗扰动能力,保障多能互补,更好适应新能源发展需要。
第四,安全可控。以实现交流与直流各电压等级协调发展,建设新一代调控系统,筑牢安全三道防线,有效防范系统故障和大面积停电风险。
舒印彪指出,清洁低碳转型是全球面临的共同挑战,需要各国科技企业界开展更加广泛的国际合作,共享合作成果。充分发挥科技创新的引领作用,实现产学研协同,加快突破一大批关键核心技术,在基础前瞻领域重点攻关高效率、高安全的大容量储能,氢能及燃料电池,高效光伏发电材料、新型绝缘材料、超导材料等技术。在工程应用领域要攻克CCUS高效率、低成本的新能源发电,大规模海上风电、虚拟电厂、主动需求响应等电力系统技术。
舒印彪提出,再电气化是实现双碳目标的有效途径,实施再电气化,就是在能源生产侧实现“清洁替代”,在能源消费侧实现“电能替代”,以电为中心、电力系统为平台,清洁化、电气化、数字化、标准化为方向,构建清洁低碳、安全高效的能源体系。他指出,按照双碳目标,要构建清洁低碳安全高效的能源体系,控制化石能源总量,着力提高利用效能,实施可再生能源替代行动,深化电力体制改革,构建以新能源为主体的新型电力系统,电力系统的结构形态将发生变化,从高碳电力系统,变为深度低碳或零碳电力系统;从以机械电磁系统为主,变为以电力电子器件为主;从确定性可控连续电源,变为不确定性随机波动电源;从高转动惯量系统,变为弱转动惯量系统。
舒印彪强调,清洁低碳转型是全球面临的共同挑战,需要各国科技界、企业界开展更加广泛的国际合作。应充分发挥科技创新引领作用,实现产学研用协同,加快突破关键核心技术。在基础前瞻领域,应重点攻关高效率高安全大容量储能、氢能及燃料电池、高效率光伏发电材料、新型绝缘材料、超导材料、宽禁带电力电子器件等技术;在工程应用领域,重点攻关CCUS、高效率低成本新能源发电、大规模海上风电、虚拟电厂、源网荷储协调运行、主动需求响应、综合能源系统等技术。
免责声明:本平台仅供信息发布交流之途,请谨慎判断信息真伪。如遇虚假诈骗信息,请立即举报
举报