分享好友 资讯首页 网站导航

全钒液流电池关键材料研究进展及展望

刘英丽 2024-01-15 13:14 · 头闻号储能技术

随着全球气候变暖和矿物燃料不断枯竭,人类亟需寻求洁净、可再生的新型能源来解决当前的能源危机。由于可再生能源具有较强的间歇性,光伏、风电等新能源具有不稳定、不连续和不可控的非稳态特征,严重威胁着电力系统可持续性及安全性。通过新能源发电技术与高效的大规模储能技术相融合,如何实现可持续能源供给及生态环境保护成为当前研究的热点。

目前,按照能量储存方式划分,可将能量储存分为机械、电磁及化学能量储存,其中机械储能主要包括压缩空气储能、抽水蓄能等。由于机械储能需要独特的地理环境,使得水力储能和压缩空气储能技术的发展受到了一定的限制;电磁能量储存主要包括超导及超级电容器能量储存,电磁储能存在能量密度低及成本高的缺点;化学能量储存主要包括锂离子电池、铅酸电池、全钒液流电池、钠硫电池等。当前,钠硫和锂离子电池存在安全隐患问题,亟需寻找一种新型的替代储能电池。

全钒液流电池因其易于实现规模化、无污染和高安全性等优点,成为当前大规模储能领域的研究热点和发展方向。

1.全钒液流电池结构及工作原理

全钒氧化还原液流电池(VRB,Vanadium Redox Battery)是1种利用电解液中不同价态的钒离子在电极表面发生的氧化还原反应,来储存和释放电能的一种电化学装置。VRB主要由电池板框、电极、质子交换膜、双极板、电解液和集流体等部件构成,其结构如图1所示。VRB的正、负极活性物质是固溶于硫酸中的钒离子。在工作过程中,利用1台循环蠕动泵把电解液注入蓄电池,在充电和放电的过程中,电解质始终是流动的。电池的总反应式和正、负极的反应式分别为式(1)、式(2)、式(3)所示。

2.全钒液流电池的优缺点

VRB在许多方面都比其他规模储能技术有更好的优势,其特征表现为:

VRB在电解液中充放电、不存在相态变化、不会出现断电及短路等问题;VRB的输出功率不依赖于其额定容量,其输出功率与电池堆的尺寸和数量有关,而额定容量取决于钒电解液的浓度和容积,所以二者均可以按照特定的需求进行灵活设计,并且可以较为容易的获得百万瓦特量级的规模;

由于VRB的正、负极活性材料均为钒组分,所以能够避免正、负极电解液的交叉污染,并且电解质溶液能够很容易地进行氧化还原反应且被重复使用,因此拥有较长的循环寿命(>10000次);

VRB在放电时无记忆效应,可以进行深度放电,即使100%放电也不会损坏电池;

由于VRB中的电解液为液态,其浓差极化较小,并且它的电极具有较高的反应性和较小低的活化极化,因此它的负载容量较大;

所用的部件原料廉价、容易获得,降低了系统的制造及维护成本。

目前,VRB面临的主要问题为:

①受限于电解质,其比容量较低,体积较大;

②电池在运转过程中,电解质是需要泵体加压促进其不断流动,导致其在压强较大时密封性差,在酸、碱及氧化剂等介质中易刻蚀,缩短了电池的使用寿命;

③在使用过程中,在某一特定的温度下,五价钒会在电解液中沉淀,从而阻塞流道,影响VRB的正常运转;

④二价钒的含量过少,对电解液的稳定性有较大的影响;

⑤初期投资费用过高,尤其是质子交换薄膜。

3.全钒液流电池关键材料

目前,VRB已经完成由实验室阶段向工业化实际应用的转变,其工程化技术得到了快速发展,在世界范围内已经建立了多个不同功率等级的全钒液流电池储能示范系统,但是由于前期投资费用高昂,其关键核心材料还欠缺系统性和深入的研究,导致VRB能量密度偏低、容量快速下降及成本较高等问题难以解决,已成为制约该项技术规模化、产业化和实际应用的瓶颈。

3.1电解液

电解液作为VRB的能量存储介质,在电池的充放电过程中起着关键作用,其稳定性对VRB性能和循环寿命有很大的影响。为提高VRB性能,需要对电解液进行改进以提高其溶解度及稳定性。电解质是由具有不同价态的活性物质(钒离子)和支撑电解质(如硫酸、盐酸、甲基磺酸及上述混合物)构成的。

该电解质能够提供适宜的离子浓度,从而使电池能够稳定运行。支撑电解液的选择主要依据电化学反应动力学、电解液在电极-电解液中的溶解性以及活性电解液中的交叉污染情况。对普通的支撑电解质硫酸来说,它提供了1个质子,可以根据酸碱度改变电池的电势。

在VFB中,V(Ⅱ)/V(Ⅲ)氧化还原电对用作负极电解液,V(Ⅳ)/V(Ⅴ)氧化还原电对用作正极电解液。由于采用了2种可溶性电对,电极表面不会发生固相反应,也不会发生相应的形貌变化。以同一种元素的4个价态为活性离子对,有效解决了长期使用过程中活性物质的交叉污染问题。

当前,人们正在对VRB中的电解液展开研究,重点在于对它的生产工艺进行优化,如加入多种助剂和稳定剂,以获得稳定性高、浓度高、温度适应范围广及价格低廉的钒电解液。目前,关于VRB正极电解液组分的相关研究发现,室温下适合VRB正极电解质含量约为1.5~2.0mol/L的V₄+和3mol/L的H₂SO₄。然而,随着钒离子浓度的不断升高,正极电解液中将出现V₂O₅沉淀物,造成管道堵塞,严重时会导致电池失效。

3.2电极

VRB在电极表面进行电化学反应,对整个电池的能量效率和循环稳定性有很大的影响。当前,对电极进行改性的方法主要包括:氧化处理、氮化处理、酸处理、热活化、电化学氧化、无机材料涂层及金属沉积改性等。其中,高温激活与电化学氧化法是一种廉价、简单、温和、可控、环境友好的电极改性方式。

由于电解质中存在很强VO₂+和硫酸,因此,对VRB的电极材料提出了更高的活性、导电性和稳定性要求,同时还要求具备优良的机械特性和廉价等优点。

当前,采用的是以金属、碳及石墨为基础的3种新型VRB电极。金属电极(如铅、钛铂、金等)具有优异的力学性能和导电性,但其电化学可逆性能极差,成本较高,限制了规模化应用。将聚乙烯、聚丙烯等高分子基团与导电性炭材料复合而成的复合电极,由于其价格低廉,质量轻,加工方便,所以被认为是一种比较理想的VRB电极材料。

另一方面,碳基材料具有良好的电导率、抗腐蚀性和电化学稳定性,在VRB中得到广泛使用。在对碳基电化学材料的长期探索中,通过对碳基材料的深入分析,学者揭示了碳基电化学材料具有良好的导电性、耐腐蚀和耐高温等特性,并具有较大的比表面积,已成为最理想的VRB电极材料之一。

3.3双极板

双极板是VRB中的重要部件,尤其是大容量、高功率型液流电池系统。碳复合材料双极板是指将某些高分子材料与一定数量的碳结合在一起而形成的复合双极板,因其加工简单、成本低廉等优势,被认为是一种极具应用前景的VRB用集流体。

另外,由于碳质双极板的电导率较金属或石墨质双极板低,所以在充放电次数较少的情况下,由于电流密度不大,双极板中的碳不会被完全消耗,而是会在两极板之间留下一些空隙,而这些空隙会导致电流通过时产生大量的热,从而进一步使双极板的电阻变大。因此,制备具有高电导率和良好耐腐蚀性能的双极板成为VRB用集流体研究重要方向。

3.4质子交换膜

质子交换膜(PEM)作为VRB的核心部件,既可隔离电解液,又可以传输质子,保障电池完成充放电循环过程。因此,PEM对提高VRB的可靠性及性能具有重要意义。

因其化学稳定性好、质子传输性强等优势,全氟磺酸树脂(PFSA)构成的全氟磺酸膜被广泛应用于VRB系统。目前,关于VRB用隔膜的研究主要集中在提高膜的离子选择透过性和提高膜的稳定性。

在VRB中,常用的质子交换膜内部通常有亲水、疏水区域。这2种区域的分布对膜的离子选择、离子传导、力学、化学稳定性等性能有重要影响。

目前,国内外学者正积极探讨、优化这2种区域的分布,进而制备出高稳定性、高选择性的质子交换膜材料。

3.4.1质子交换膜研究进展

根据材料不同,市售的PEM大致包括4类:全氟磺酸型PEM、部分含氟型PEM、非氟型PEM及非树脂型PEM等。到目前为止,全氟磺酸类PEM在市场上得到了广泛的应用,其中最著名的就是美国杜邦公司在20世纪70年代开发出来的Nafion膜,因为这种薄膜的主链是碳氟化合物,因此具有较好的化学和热稳定性。

另一方面,加上侧链-SO₃H连接到碳氟主链上,由于F原子极强的电负性,-SO₃H附近的电子云密度大大降低,H+更容易从-SO₃H上解离,所以,全氟磺酸型PEM具有较好的质子导电性。Nafion膜的结构如图2所示,-SO₃H以共价键连接到碳氟骨架上,在水溶液中,-SO₃H可以被电离成固定的-SO₃-和自由H+。而且,-SO₃H还能将水分子聚集在一起,形成一片微区,当微区内的水分足够多时,这些微区之间便会相互连接,形成一条长距离的质子传输通道。目前普遍认为,Nafion膜符合上述离子簇网络模型,如图3所示。

免责声明:本平台仅供信息发布交流之途,请谨慎判断信息真伪。如遇虚假诈骗信息,请立即举报

举报
反对 0
更多相关文章

评论

0

收藏

点赞